3.9.100 \(\int \frac {\sec ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx\) [900]

3.9.100.1 Optimal result
3.9.100.2 Mathematica [A] (verified)
3.9.100.3 Rubi [A] (verified)
3.9.100.4 Maple [A] (verified)
3.9.100.5 Fricas [A] (verification not implemented)
3.9.100.6 Sympy [F(-1)]
3.9.100.7 Maxima [A] (verification not implemented)
3.9.100.8 Giac [A] (verification not implemented)
3.9.100.9 Mupad [B] (verification not implemented)

3.9.100.1 Optimal result

Integrand size = 29, antiderivative size = 178 \[ \int \frac {\sec ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {7 \text {arctanh}(\sin (c+d x))}{256 a d}-\frac {7 \sec (c+d x) \tan (c+d x)}{256 a d}+\frac {7 \sec ^3(c+d x) \tan (c+d x)}{128 a d}-\frac {7 \sec ^3(c+d x) \tan ^3(c+d x)}{96 a d}+\frac {7 \sec ^3(c+d x) \tan ^5(c+d x)}{80 a d}-\frac {\sec ^3(c+d x) \tan ^7(c+d x)}{10 a d}+\frac {\tan ^8(c+d x)}{8 a d}+\frac {\tan ^{10}(c+d x)}{10 a d} \]

output
-7/256*arctanh(sin(d*x+c))/a/d-7/256*sec(d*x+c)*tan(d*x+c)/a/d+7/128*sec(d 
*x+c)^3*tan(d*x+c)/a/d-7/96*sec(d*x+c)^3*tan(d*x+c)^3/a/d+7/80*sec(d*x+c)^ 
3*tan(d*x+c)^5/a/d-1/10*sec(d*x+c)^3*tan(d*x+c)^7/a/d+1/8*tan(d*x+c)^8/a/d 
+1/10*tan(d*x+c)^10/a/d
 
3.9.100.2 Mathematica [A] (verified)

Time = 1.11 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.70 \[ \int \frac {\sec ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {210 \text {arctanh}(\sin (c+d x))-\frac {30}{(1-\sin (c+d x))^4}+\frac {160}{(1-\sin (c+d x))^3}-\frac {315}{(1-\sin (c+d x))^2}+\frac {210}{1-\sin (c+d x)}-\frac {48}{(1+\sin (c+d x))^5}+\frac {270}{(1+\sin (c+d x))^4}-\frac {580}{(1+\sin (c+d x))^3}+\frac {525}{(1+\sin (c+d x))^2}}{7680 a d} \]

input
Integrate[(Sec[c + d*x]^2*Tan[c + d*x]^7)/(a + a*Sin[c + d*x]),x]
 
output
-1/7680*(210*ArcTanh[Sin[c + d*x]] - 30/(1 - Sin[c + d*x])^4 + 160/(1 - Si 
n[c + d*x])^3 - 315/(1 - Sin[c + d*x])^2 + 210/(1 - Sin[c + d*x]) - 48/(1 
+ Sin[c + d*x])^5 + 270/(1 + Sin[c + d*x])^4 - 580/(1 + Sin[c + d*x])^3 + 
525/(1 + Sin[c + d*x])^2)/(a*d)
 
3.9.100.3 Rubi [A] (verified)

Time = 1.01 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.02, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.586, Rules used = {3042, 3314, 3042, 3087, 244, 2009, 3091, 3042, 3091, 3042, 3091, 3042, 3091, 3042, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^7(c+d x) \sec ^2(c+d x)}{a \sin (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^7}{\cos (c+d x)^9 (a \sin (c+d x)+a)}dx\)

\(\Big \downarrow \) 3314

\(\displaystyle \frac {\int \sec ^4(c+d x) \tan ^7(c+d x)dx}{a}-\frac {\int \sec ^3(c+d x) \tan ^8(c+d x)dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sec (c+d x)^4 \tan (c+d x)^7dx}{a}-\frac {\int \sec (c+d x)^3 \tan (c+d x)^8dx}{a}\)

\(\Big \downarrow \) 3087

\(\displaystyle \frac {\int \tan ^7(c+d x) \left (\tan ^2(c+d x)+1\right )d\tan (c+d x)}{a d}-\frac {\int \sec (c+d x)^3 \tan (c+d x)^8dx}{a}\)

\(\Big \downarrow \) 244

\(\displaystyle \frac {\int \left (\tan ^9(c+d x)+\tan ^7(c+d x)\right )d\tan (c+d x)}{a d}-\frac {\int \sec (c+d x)^3 \tan (c+d x)^8dx}{a}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\int \sec (c+d x)^3 \tan (c+d x)^8dx}{a}\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \int \sec ^3(c+d x) \tan ^6(c+d x)dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \int \sec (c+d x)^3 \tan (c+d x)^6dx}{a}\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \int \sec ^3(c+d x) \tan ^4(c+d x)dx\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \int \sec (c+d x)^3 \tan (c+d x)^4dx\right )}{a}\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \left (\frac {\tan ^3(c+d x) \sec ^3(c+d x)}{6 d}-\frac {1}{2} \int \sec ^3(c+d x) \tan ^2(c+d x)dx\right )\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \left (\frac {\tan ^3(c+d x) \sec ^3(c+d x)}{6 d}-\frac {1}{2} \int \sec (c+d x)^3 \tan (c+d x)^2dx\right )\right )}{a}\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{4} \int \sec ^3(c+d x)dx-\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {\tan ^3(c+d x) \sec ^3(c+d x)}{6 d}\right )\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{4} \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {\tan ^3(c+d x) \sec ^3(c+d x)}{6 d}\right )\right )}{a}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{4} \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {\tan ^3(c+d x) \sec ^3(c+d x)}{6 d}\right )\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{4} \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {\tan ^3(c+d x) \sec ^3(c+d x)}{6 d}\right )\right )}{a}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {1}{10} \tan ^{10}(c+d x)+\frac {1}{8} \tan ^8(c+d x)}{a d}-\frac {\frac {\tan ^7(c+d x) \sec ^3(c+d x)}{10 d}-\frac {7}{10} \left (\frac {\tan ^5(c+d x) \sec ^3(c+d x)}{8 d}-\frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{4} \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {\tan ^3(c+d x) \sec ^3(c+d x)}{6 d}\right )\right )}{a}\)

input
Int[(Sec[c + d*x]^2*Tan[c + d*x]^7)/(a + a*Sin[c + d*x]),x]
 
output
(Tan[c + d*x]^8/8 + Tan[c + d*x]^10/10)/(a*d) - ((Sec[c + d*x]^3*Tan[c + d 
*x]^7)/(10*d) - (7*((Sec[c + d*x]^3*Tan[c + d*x]^5)/(8*d) - (5*((Sec[c + d 
*x]^3*Tan[c + d*x]^3)/(6*d) + (-1/4*(Sec[c + d*x]^3*Tan[c + d*x])/d + (Arc 
Tanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*d))/4)/2))/8))/1 
0)/a
 

3.9.100.3.1 Defintions of rubi rules used

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3087
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_S 
ymbol] :> Simp[1/f   Subst[Int[(b*x)^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + 
f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n - 1) 
/2] && LtQ[0, n, m - 1])
 

rule 3091
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[b*(a*Sec[e + f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m 
 + n - 1))), x] - Simp[b^2*((n - 1)/(m + n - 1))   Int[(a*Sec[e + f*x])^m*( 
b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] & 
& NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
 

rule 3314
Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/(( 
a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/a   Int[Cos[e + f 
*x]^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[1/(b*d)   Int[Cos[e + f*x]^(p 
 - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] & 
& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[0, n, (p 
+ 1)/2] || (LeQ[p, -n] && LtQ[-n, 2*p - 3]) || (GtQ[n, 0] && LeQ[n, -p]))
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.9.100.4 Maple [A] (verified)

Time = 1.66 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.71

method result size
derivativedivides \(\frac {\frac {1}{256 \left (\sin \left (d x +c \right )-1\right )^{4}}+\frac {1}{48 \left (\sin \left (d x +c \right )-1\right )^{3}}+\frac {21}{512 \left (\sin \left (d x +c \right )-1\right )^{2}}+\frac {7}{256 \left (\sin \left (d x +c \right )-1\right )}+\frac {7 \ln \left (\sin \left (d x +c \right )-1\right )}{512}+\frac {1}{160 \left (1+\sin \left (d x +c \right )\right )^{5}}-\frac {9}{256 \left (1+\sin \left (d x +c \right )\right )^{4}}+\frac {29}{384 \left (1+\sin \left (d x +c \right )\right )^{3}}-\frac {35}{512 \left (1+\sin \left (d x +c \right )\right )^{2}}-\frac {7 \ln \left (1+\sin \left (d x +c \right )\right )}{512}}{d a}\) \(127\)
default \(\frac {\frac {1}{256 \left (\sin \left (d x +c \right )-1\right )^{4}}+\frac {1}{48 \left (\sin \left (d x +c \right )-1\right )^{3}}+\frac {21}{512 \left (\sin \left (d x +c \right )-1\right )^{2}}+\frac {7}{256 \left (\sin \left (d x +c \right )-1\right )}+\frac {7 \ln \left (\sin \left (d x +c \right )-1\right )}{512}+\frac {1}{160 \left (1+\sin \left (d x +c \right )\right )^{5}}-\frac {9}{256 \left (1+\sin \left (d x +c \right )\right )^{4}}+\frac {29}{384 \left (1+\sin \left (d x +c \right )\right )^{3}}-\frac {35}{512 \left (1+\sin \left (d x +c \right )\right )^{2}}-\frac {7 \ln \left (1+\sin \left (d x +c \right )\right )}{512}}{d a}\) \(127\)
risch \(\frac {i \left (9044 \,{\mathrm e}^{5 i \left (d x +c \right )}+105 \,{\mathrm e}^{17 i \left (d x +c \right )}-4420 \,{\mathrm e}^{15 i \left (d x +c \right )}+9044 \,{\mathrm e}^{13 i \left (d x +c \right )}-29372 \,{\mathrm e}^{11 i \left (d x +c \right )}+24710 \,{\mathrm e}^{9 i \left (d x +c \right )}-950 i {\mathrm e}^{14 i \left (d x +c \right )}+210 i {\mathrm e}^{16 i \left (d x +c \right )}+3206 i {\mathrm e}^{8 i \left (d x +c \right )}-1778 i {\mathrm e}^{6 i \left (d x +c \right )}+1778 i {\mathrm e}^{12 i \left (d x +c \right )}+105 \,{\mathrm e}^{i \left (d x +c \right )}-3206 i {\mathrm e}^{10 i \left (d x +c \right )}+950 i {\mathrm e}^{4 i \left (d x +c \right )}-210 i {\mathrm e}^{2 i \left (d x +c \right )}-4420 \,{\mathrm e}^{3 i \left (d x +c \right )}-29372 \,{\mathrm e}^{7 i \left (d x +c \right )}\right )}{1920 \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{10} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{8} d a}+\frac {7 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{256 d a}-\frac {7 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{256 a d}\) \(277\)
parallelrisch \(\frac {\left (105 \cos \left (10 d x +10 c \right )+22050 \cos \left (2 d x +2 c \right )+12600 \cos \left (4 d x +4 c \right )+4725 \cos \left (6 d x +6 c \right )+1050 \cos \left (8 d x +8 c \right )+13230\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (-105 \cos \left (10 d x +10 c \right )-22050 \cos \left (2 d x +2 c \right )-12600 \cos \left (4 d x +4 c \right )-4725 \cos \left (6 d x +6 c \right )-1050 \cos \left (8 d x +8 c \right )-13230\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+69720 \sin \left (3 d x +3 c \right )-23128 \sin \left (5 d x +5 c \right )+8210 \sin \left (7 d x +7 c \right )-210 \sin \left (9 d x +9 c \right )+96 \cos \left (10 d x +10 c \right )-87360 \cos \left (2 d x +2 c \right )+42240 \cos \left (4 d x +4 c \right )-11040 \cos \left (6 d x +6 c \right )+960 \cos \left (8 d x +8 c \right )-95340 \sin \left (d x +c \right )+55104}{3840 a d \left (\cos \left (10 d x +10 c \right )+10 \cos \left (8 d x +8 c \right )+45 \cos \left (6 d x +6 c \right )+120 \cos \left (4 d x +4 c \right )+210 \cos \left (2 d x +2 c \right )+126\right )}\) \(315\)

input
int(sec(d*x+c)^9*sin(d*x+c)^7/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d/a*(1/256/(sin(d*x+c)-1)^4+1/48/(sin(d*x+c)-1)^3+21/512/(sin(d*x+c)-1)^ 
2+7/256/(sin(d*x+c)-1)+7/512*ln(sin(d*x+c)-1)+1/160/(1+sin(d*x+c))^5-9/256 
/(1+sin(d*x+c))^4+29/384/(1+sin(d*x+c))^3-35/512/(1+sin(d*x+c))^2-7/512*ln 
(1+sin(d*x+c)))
 
3.9.100.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.05 \[ \int \frac {\sec ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {210 \, \cos \left (d x + c\right )^{8} - 2630 \, \cos \left (d x + c\right )^{6} + 4708 \, \cos \left (d x + c\right )^{4} - 3344 \, \cos \left (d x + c\right )^{2} - 105 \, {\left (\cos \left (d x + c\right )^{8} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{8}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 105 \, {\left (\cos \left (d x + c\right )^{8} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{8}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (105 \, \cos \left (d x + c\right )^{6} - 250 \, \cos \left (d x + c\right )^{4} + 184 \, \cos \left (d x + c\right )^{2} - 48\right )} \sin \left (d x + c\right ) + 864}{7680 \, {\left (a d \cos \left (d x + c\right )^{8} \sin \left (d x + c\right ) + a d \cos \left (d x + c\right )^{8}\right )}} \]

input
integrate(sec(d*x+c)^9*sin(d*x+c)^7/(a+a*sin(d*x+c)),x, algorithm="fricas" 
)
 
output
1/7680*(210*cos(d*x + c)^8 - 2630*cos(d*x + c)^6 + 4708*cos(d*x + c)^4 - 3 
344*cos(d*x + c)^2 - 105*(cos(d*x + c)^8*sin(d*x + c) + cos(d*x + c)^8)*lo 
g(sin(d*x + c) + 1) + 105*(cos(d*x + c)^8*sin(d*x + c) + cos(d*x + c)^8)*l 
og(-sin(d*x + c) + 1) - 2*(105*cos(d*x + c)^6 - 250*cos(d*x + c)^4 + 184*c 
os(d*x + c)^2 - 48)*sin(d*x + c) + 864)/(a*d*cos(d*x + c)^8*sin(d*x + c) + 
 a*d*cos(d*x + c)^8)
 
3.9.100.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**9*sin(d*x+c)**7/(a+a*sin(d*x+c)),x)
 
output
Timed out
 
3.9.100.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.20 \[ \int \frac {\sec ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {2 \, {\left (105 \, \sin \left (d x + c\right )^{8} + 105 \, \sin \left (d x + c\right )^{7} + 895 \, \sin \left (d x + c\right )^{6} - 65 \, \sin \left (d x + c\right )^{5} - 961 \, \sin \left (d x + c\right )^{4} - \sin \left (d x + c\right )^{3} + 489 \, \sin \left (d x + c\right )^{2} + 9 \, \sin \left (d x + c\right ) - 96\right )}}{a \sin \left (d x + c\right )^{9} + a \sin \left (d x + c\right )^{8} - 4 \, a \sin \left (d x + c\right )^{7} - 4 \, a \sin \left (d x + c\right )^{6} + 6 \, a \sin \left (d x + c\right )^{5} + 6 \, a \sin \left (d x + c\right )^{4} - 4 \, a \sin \left (d x + c\right )^{3} - 4 \, a \sin \left (d x + c\right )^{2} + a \sin \left (d x + c\right ) + a} - \frac {105 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a} + \frac {105 \, \log \left (\sin \left (d x + c\right ) - 1\right )}{a}}{7680 \, d} \]

input
integrate(sec(d*x+c)^9*sin(d*x+c)^7/(a+a*sin(d*x+c)),x, algorithm="maxima" 
)
 
output
1/7680*(2*(105*sin(d*x + c)^8 + 105*sin(d*x + c)^7 + 895*sin(d*x + c)^6 - 
65*sin(d*x + c)^5 - 961*sin(d*x + c)^4 - sin(d*x + c)^3 + 489*sin(d*x + c) 
^2 + 9*sin(d*x + c) - 96)/(a*sin(d*x + c)^9 + a*sin(d*x + c)^8 - 4*a*sin(d 
*x + c)^7 - 4*a*sin(d*x + c)^6 + 6*a*sin(d*x + c)^5 + 6*a*sin(d*x + c)^4 - 
 4*a*sin(d*x + c)^3 - 4*a*sin(d*x + c)^2 + a*sin(d*x + c) + a) - 105*log(s 
in(d*x + c) + 1)/a + 105*log(sin(d*x + c) - 1)/a)/d
 
3.9.100.8 Giac [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.88 \[ \int \frac {\sec ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {420 \, \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a} - \frac {420 \, \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right )}{a} + \frac {5 \, {\left (175 \, \sin \left (d x + c\right )^{4} - 868 \, \sin \left (d x + c\right )^{3} + 1302 \, \sin \left (d x + c\right )^{2} - 828 \, \sin \left (d x + c\right ) + 195\right )}}{a {\left (\sin \left (d x + c\right ) - 1\right )}^{4}} - \frac {959 \, \sin \left (d x + c\right )^{5} + 4795 \, \sin \left (d x + c\right )^{4} + 7490 \, \sin \left (d x + c\right )^{3} + 5610 \, \sin \left (d x + c\right )^{2} + 2055 \, \sin \left (d x + c\right ) + 291}{a {\left (\sin \left (d x + c\right ) + 1\right )}^{5}}}{30720 \, d} \]

input
integrate(sec(d*x+c)^9*sin(d*x+c)^7/(a+a*sin(d*x+c)),x, algorithm="giac")
 
output
-1/30720*(420*log(abs(sin(d*x + c) + 1))/a - 420*log(abs(sin(d*x + c) - 1) 
)/a + 5*(175*sin(d*x + c)^4 - 868*sin(d*x + c)^3 + 1302*sin(d*x + c)^2 - 8 
28*sin(d*x + c) + 195)/(a*(sin(d*x + c) - 1)^4) - (959*sin(d*x + c)^5 + 47 
95*sin(d*x + c)^4 + 7490*sin(d*x + c)^3 + 5610*sin(d*x + c)^2 + 2055*sin(d 
*x + c) + 291)/(a*(sin(d*x + c) + 1)^5))/d
 
3.9.100.9 Mupad [B] (verification not implemented)

Time = 18.75 (sec) , antiderivative size = 496, normalized size of antiderivative = 2.79 \[ \int \frac {\sec ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{17}}{128}+\frac {7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{16}}{64}-\frac {35\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{15}}{96}-\frac {161\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}}{192}+\frac {469\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}}{480}+\frac {2681\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}}{960}-\frac {593\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{480}+\frac {25667\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}}{960}+\frac {1447\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{192}+\frac {25667\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{960}-\frac {593\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{480}+\frac {2681\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{960}+\frac {469\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{480}-\frac {161\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{192}-\frac {35\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{96}+\frac {7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{64}+\frac {7\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{128}}{d\,\left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{18}+2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{17}-7\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{16}-16\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{15}+20\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}+56\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}-28\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-112\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}+14\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+140\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+14\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-112\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7-28\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+56\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+20\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-16\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-7\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )}-\frac {7\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{128\,a\,d} \]

input
int(sin(c + d*x)^7/(cos(c + d*x)^9*(a + a*sin(c + d*x))),x)
 
output
((7*tan(c/2 + (d*x)/2))/128 + (7*tan(c/2 + (d*x)/2)^2)/64 - (35*tan(c/2 + 
(d*x)/2)^3)/96 - (161*tan(c/2 + (d*x)/2)^4)/192 + (469*tan(c/2 + (d*x)/2)^ 
5)/480 + (2681*tan(c/2 + (d*x)/2)^6)/960 - (593*tan(c/2 + (d*x)/2)^7)/480 
+ (25667*tan(c/2 + (d*x)/2)^8)/960 + (1447*tan(c/2 + (d*x)/2)^9)/192 + (25 
667*tan(c/2 + (d*x)/2)^10)/960 - (593*tan(c/2 + (d*x)/2)^11)/480 + (2681*t 
an(c/2 + (d*x)/2)^12)/960 + (469*tan(c/2 + (d*x)/2)^13)/480 - (161*tan(c/2 
 + (d*x)/2)^14)/192 - (35*tan(c/2 + (d*x)/2)^15)/96 + (7*tan(c/2 + (d*x)/2 
)^16)/64 + (7*tan(c/2 + (d*x)/2)^17)/128)/(d*(a + 2*a*tan(c/2 + (d*x)/2) - 
 7*a*tan(c/2 + (d*x)/2)^2 - 16*a*tan(c/2 + (d*x)/2)^3 + 20*a*tan(c/2 + (d* 
x)/2)^4 + 56*a*tan(c/2 + (d*x)/2)^5 - 28*a*tan(c/2 + (d*x)/2)^6 - 112*a*ta 
n(c/2 + (d*x)/2)^7 + 14*a*tan(c/2 + (d*x)/2)^8 + 140*a*tan(c/2 + (d*x)/2)^ 
9 + 14*a*tan(c/2 + (d*x)/2)^10 - 112*a*tan(c/2 + (d*x)/2)^11 - 28*a*tan(c/ 
2 + (d*x)/2)^12 + 56*a*tan(c/2 + (d*x)/2)^13 + 20*a*tan(c/2 + (d*x)/2)^14 
- 16*a*tan(c/2 + (d*x)/2)^15 - 7*a*tan(c/2 + (d*x)/2)^16 + 2*a*tan(c/2 + ( 
d*x)/2)^17 + a*tan(c/2 + (d*x)/2)^18)) - (7*atanh(tan(c/2 + (d*x)/2)))/(12 
8*a*d)